JARINGAN SYARAF TIRUAN DENGAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI NILAI UJIAN KOMPETENSI SISWA (STUDI KASUS SMKS JABAL RAHMAH STABAT)

  • Kiki Sri Handayani STMIK Kaputama Binjai
  • Katen Lumbanbatu STMIK Kaputama Binjai
  • Magdalena Simanjuntak STMIK Kaputama Binjai

Abstract

Competency testing is a process of assessment (assessment) both technical and non-technical through the collection of relevant evidence to determine whether a person is competent or not yet competent in a certain competency unit or job qualification. The implementation of the series of "tests" is basically to determine the level of knowledge, skills and personality of students. To find out the passing standards of student competence in facing exams, a method is needed to process the old student grade data to predict the value of students who will take the national exam, namely by using the artificial neural network method with Backpropagation, the results obtained are 0.55178871 with the number of squared errors. 0.004595309, then the result has reached the target, then the iteration stops.

Downloads

Download data is not yet available.

References

A.M.H. Pardede dan Novriyenni. 2016. Perancangan Sistem Pakar Diagnosa Penyakit Tanaman Kelapa Sawit Dengan Metode Bayes Study Kasus PT.Ukindo Blankahan Estate. Binjai : Jurnal KAPUTAMA. Vol. 10, No. 1.
Diyah Puspitaningrum. 2006. Pengantar Jaringan Saraf Tiruan. CV. Andi Offset, Yogyakarta.
Jek JongSiang. 2009.Jaringan Syaraf Tiruan dan Pemogramannya Menggunakan Matlab. CV. Andi Offset, Yogyakarta.
Kusumodestoni R. Hadapiningradja dan Sarwido. 2017. Komparasi Model Support Vector Machines (Svm) dan Neural Network Untuk Mengetahui Tingkat Akurasi Prediksi Tertinggi Harga Saham. Jurnal Informatika UPGRIS Vol. 3, No. 1 : 1-9.
Razak dan Riksakomara. 2017. Peramalan Jumlah Produksi Ikan Dengan Menggunakan Backpropagation Neural Network (Studi Kasus: UPTD Pelabuhan Perikanan Bajarmasin. Surabaya : Jurnal Teknik ITS. Vol. 6, No. 1 : A142-A148.
Rometdo Muzawi dan Novri Sahrun. 2016. Jaringan Syaraf Tiruan Dengan Teknik Backpropagation Untuk Memprediksi Standar Kelulusan Ujian Nasional Produktif Kompetensi Di SMK (Studi Kasus: SMK Nasional Ai Huda Pekanbaru). Jurnal Amik Riau. Vol. 2, No. 2.
Sandy Kosasih. 2014. Penerapan Jaringan Syaraf Tiruan Backpropagation Untuk Memprediksi Ujian Sekolah. Jurnal STMIK Pontianak. Vol.7, No. 1 : 20-28
T.Sutojo, Edy Mulyanto, dkk.2011.Kecerdasan Buatan. CV.Andi Offset, Yogyakarta.
Wuryandari Maharani Dessy dan Afrianto Irawan. 2012. Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation dan Learning Vector Quantization Pada Pengenalan Wajah.Universitas Komputer Indonesia: Bandung.
Published
2021-09-26
How to Cite
HANDAYANI, Kiki Sri; LUMBANBATU, Katen; SIMANJUNTAK, Magdalena. JARINGAN SYARAF TIRUAN DENGAN ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI NILAI UJIAN KOMPETENSI SISWA (STUDI KASUS SMKS JABAL RAHMAH STABAT). Jurnal Ilmiah Abdi Ilmu, [S.l.], v. 14, n. 1, p. 73-80, sep. 2021. ISSN 1979-5408. Available at: <https://jurnal.pancabudi.ac.id/index.php/abdiilmu/article/view/3937>. Date accessed: 22 jan. 2025.