PENERAPAN DATA MINING UNTUK PREDIKSI MEREK PAKAIAN YANG PALING DIMINATI DENGAN METODE K-NEAREST NEIGHBOR (STUDI KASUS : PT. MATAHARI DEPARTEMENT STORE BINJAI)

  • Andrean Pratama STMIK Kaputama
  • Budi Serasi Ginting STMIK Kaputama
  • Nurhayati Nurhayati STMIK Kaputama

Abstract

One of the business activities that must be carried out to keep the company running and growing is sales. Decisions taken by corporate responsibility holders will affect the company in the future. One of the decisions that must be determined is the product to be sold for the next period. In determining the decision, a method is needed so that the decisions to be taken can be right on target. The technique used to predict the situation in the next period is called prediction. This study proposes the development of a clothing sales prediction application. The method used is the classification with the K-Nearest Neighbor algorithm. The results of data mining calculations using classification techniques with the K-Nearest Neighbor algorithm are the most predominant, it can be predicted that the number of clothing sales in the next period will increase with an average prediction of 14,900 per month and the most popular clothing brand is Cardinal.

Downloads

Download data is not yet available.

References

Amelia, M. winny, Lumenta, A. S. ., & Jacobus, A. (2017). Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naïve Bayes. Jurnal Teknik Informatika. https://doi.org/10.35793/jti.11.1.2017.17652
Amelia, Y. (2018). Penerapan Data Mining Untuk Prediksi Penjaulan Produk Elektronik Terlaris Menggunakan Metode K-Nearest Neighbor. Palembang:Universitas Islam Negeri Raden Fatah.
Fajar Astuti Hermawati, Data Mining,Andi, Yogyakarta,2013
Kamus Besar Bahasa Indonesia (KBBI), 2017.
Hutami, R., & Astuti, E. Z. (2016). Implementasi Metode K-Nearest Neighbor Untuk Prediksi Penjualan Furniture Pada CV.Octo Agung Jepara. Universitas Dian Nuswantoro Semarang.
Kusrini. (2005). Proses Data Mining. Mining of Massive Datasets.
Ladjamudin Al-Bahra. (2013). Analisis Dan Desain Sistem Informasi. In Analisis Dan Desain Sistem Informasi.
Lastiansh, Sena. 2012. Pengertian User Interface. Jakarta: PT. Elex Media Komputindo.
Mustakim, & Oktaviani, G. (2016). Algoritma K-Nearest Neighbor Classification. Jurnal Sains, Teknologi Dan Industri.
Nugroho, B. (2005). Database Relasional dengan MySQL. In Andi: Yogyakarta.
Nugroho, B. (2017). Dasar Pemrograman Web PHP-MySQL dengan Dreamweaver. In Gava Media.
Prasetyo, E. (2014). DATA MINING Mengolah Data Menjadi Informasi Menggunakan Matlab. In penerbit andi.
Sugiarti, Y. (2013). Pengantar UML (Unified Modeling Language). Graha Ilmu. https://doi.org/http://dx.doi.org/10.1109/ICCSN.2010.19
Yatini B, I. (2014). Aplikasi pengolahan citra berbasis web menggunakan javascript dan jquery. Jurnal Teknik.
Sutarman. 2007. MembangunAplikasi Web Dengan PHP dan MySQL.EdisiKedua, CetakanPertama, GrahaIlmu, Yokyakarta.
Sutedjo Budi, Perencanaan&Pembangunan Sistem Visual Basic, Andi, Yogyakarta, 2009.
Yatini, I. 2010. Flowchat Algoritma dan Pemerograman Menggunakan Bahasa C++Builder.Edisi Pertama, Cetakan Pertama, Graha Ilmu, Yogyakarta.
Published
2021-12-16
How to Cite
PRATAMA, Andrean; GINTING, Budi Serasi; NURHAYATI, Nurhayati. PENERAPAN DATA MINING UNTUK PREDIKSI MEREK PAKAIAN YANG PALING DIMINATI DENGAN METODE K-NEAREST NEIGHBOR (STUDI KASUS : PT. MATAHARI DEPARTEMENT STORE BINJAI). Jurnal Ilmiah Abdi Ilmu, [S.l.], v. 14, n. 2, p. 54-64, dec. 2021. ISSN 1979-5408. Available at: <https://jurnal.pancabudi.ac.id/index.php/abdiilmu/article/view/4002>. Date accessed: 02 jan. 2025.