JARINGAN SYARAF TIRUAN MEMPREDIKSI TINGKAT PENJUALAN SEPEDA MOTOR MENGGUNAKAN METODE BACKPROPAGATION (STUDI KASUS : CV.SATU HATI PERKASA)
Abstract
Artificial neural networks are a branch of AI (Artificial Intelligence). Artificial neural network is an information processing paradigm which is inspired by the human brain system in receiving information and solving problems by carrying out the learning process through changes in the weight of its synapses. Motorbikes are one of the important land transportation at this time like a pkok thing which can help them do their activities, especially at work. Therefore, motorcycle manufacturers are competing to create motorbikes with different advantages and advantages so that in the market the number of motorbikes is very large and varied. Motorcycle sales, using motorcycle sales data for 4 years, from 2015 to 2019. Sales data will be processed by the network, in the form of the number of motorcycle sales each month. The data needed in this artificial neural network analysis process is the result of a pure database by taking the input variable in the form of motorcycle sales with the Honda brand and the number of motorcycle sales for the following month as output. In other words, the prediction of motorcycle sales predictions for 3 years is processed into the matlab using the GUI facility, to produce information on the prediction of motorcycle sales that has increased with an average prediction of 27.5185 per month from old data with an average of 25, 75 per month
Downloads
References
Aris Sugiharto, 2015 Penegrtian Backpropagation, Penerbit Andi, Yogyakarta
Basu, Swastha. 2009. Manajemen Pemasaran. Jakarta: Erlangga.
Jugiyanto. 2008. Analisis dan Desain Sistem Informasi: Pendekatan /terstruktur Teori dan Praktej Aplikasi Bisnis. Yogyakarta: Andi
Krismiaji. 2010. Sistem Informasi Akuntansi edisi ketiga. Yogyakarta: Unit
Penerbit dan Percetakan Sekolah Tinggi Ilmu YKPN.
Kusumodestoni, R. H., Sucipto, A., Ismiati, S. N., & Abid, M. N. 2019. Penerapan Algoritma Backpropagation Pada Game Pengenalan Nahwu Di Mi Darul Falah Jepara. POSITIF : Jurnal Sistem Dan Teknologi Informasi.
Lastefo. Nurhayati. 2008 Pemrograman GUI dengan MATLAB, Penerbit Andi, Yogyakarta
Lastiansh, Sena. 2012. Pengertian User Interface. Jakarta: PT. Elex Media Komputindo.
Lestari, N., & Van FC, L. L. 2017. Implementasi jaringan syaraf tiruan untuk menilai kelayakan tugas akhir mahasiswa (studi kasus di amik bukittinggi). Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi. https://doi.org/10.31849/digitalzone.v8i1.614
Lestari, Y. D. 2017. Jaringan syaraf tiruan untuk prediksi penjualan jamur menggunakan algoritma backropagation. Jurnal ISD
Miro, F. 2005. Perencanaan Transportasi untuk Mahasiswa, Perencana, dan Praktisi. Erlangga. Jakarta.
Pakaja, F., Naba, A., & Purwanto. (2012). Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor. Eeccis
Puspitaningrum, D. 2004. Pengantar Jaringan Syaraf Tiruan. In Jurnal Transformatika.
Sudarto, S. 2002. Jaringan Syaraf Tiruan. In Dinamik - Jurnal Teknologi Informasi.