TURBIN ANGIN JENIS ICEWIND SEBAGAI KONVERTER ANGIN KECEPATAN RENDAH UNTUK MENGHASILKAN TENAGA LISTRIK

  • Parlin Siagian Universitas Pembangunan Panca Budi
  • Hermansyah Alam Universitas Pembangunan Panca Budi
  • Muhammad Fadlan Universitas Pembangunan Panca Budi

Abstract

Beach coastal channel between the Pantai Cermin and Malacca Strait with a maximum tidal current velocity of about 2 m/s to 5 m/s is unsuitable for installing conventional tidal turbines. This study aims to introduce a Savonius Axial wind turbine with modification called icewind, which is added to a Savonius tidal turbine to make feasible power extraction from this low-speed tidal current. For this purpose, used 3 blades for the testing apparatus without deflectors. The results show that shows that wind with low speed which is not potential for horizontal wind turbines can be utilized to produce electrical energy with a voltage that can be used for smaller scale purposes of 1000 watts. As a general result, the Savonius turbine with icewind modification deflectors is very consistent with the conditions of the coastal area channel, in which the tidal current speed is more often fewer than 5 m/s. the use of icewind in coastal areas can help generate electrical energy on a small scale.

Author Biographies

Parlin Siagian, Universitas Pembangunan Panca Budi

Teknik Elektro

Hermansyah Alam, Universitas Pembangunan Panca Budi

Teknik Elektro

Muhammad Fadlan, Universitas Pembangunan Panca Budi

Teknik Elektro

References

Alom Nur, S. U. K. (2019). Evolution and progress in the development of Savonius wind turbine rotor blade profiles and shapes. J Solar Energy Eng, 141((3).
Balduzzi Francesco, Bianchini Alessandro, Carnevale Ennio Antonio, Fer rari Lorenzo, M. S. (n.d.). Feasibility analysis of a Darrieus vertical_axis wind turbine installation in the rooftop of a building. Appl Energy, 97:, 921–929.
Barnes Andrew, Marshall-Cross Daniel, H. B. R. (2019). Towards a standard approach for future vertical axis wind turbine aerodynamics research and development. Renew Sustain Energy, 148, 111221.
El-Askary WA, Nasef MH, Abdel-Hamid AA, G. H. (2021). Harvesting wind energy for improving performance of Savonius rotor. J Wind Eng Ind Aerodyn, 139:, 8–15.
El-Askary WA, Saad AS, AbdelSalam AM, S. I. (2021a). Experimental and theoretical studies for improving the performance of a modified shape Savonius wind turbine. J Energy Resour Technol., 142((12).).
El-Askary WA, Saad AS, AbdelSalam AM, S. I. (2021b). Investigating the performance of a twisted modified Savonius rotor. J Wind Eng Ind Aerodyn., 1((182):), 344–55.
Emmanuel Binyet, J. W. (2011). Numerical study of a six-bladed Savonius wind turbine. J Solar Energy Eng, 133((4)).
Farhan A, Hassanpour A, Burns A, M. Y. (n.d.). Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Renew Energy. Renew Energy, 131, 1255–73.
Fatahian H, Salarian H, Khaleghinia J, F. E. (2018). Improving the efficiency of a Savonius vertical axis wind turbine using an optimum parameters. Computational Research Progress in Applied Science & Engineering (CRPASE), 4, 27–32.
Fatahian H, Salarian H, Khaleghinia J, F. E. (2022). Improving the efficiency of a Savonius vertical axis wind turbine using an optimum parameters. Computational Research Progress in Applied Science & Engineering (CRPASE), 4:, 27–32.
Ferdoues MS, Ebrahimi S, V. K. (n.d.-a). Multi-objective optimization of the design and operating point of a new external axis wind turbine. Energy, 125:, 643–53.
Ferdoues MS, Ebrahimi S, V. K. (n.d.-b). Multi-objective optimization of the design and operating point of a new external axis wind turbine. Energy, 125, 643–53.
Ferrari G, Federici D, Schito P, Inzoli F, M. R. (2017). CFD study of Savonius wind turbine: 3D model validation and parametric analysis. Renew Energy, 105:, 722–34.
FR., M. (1994). Two-equation eddy-viscosity turbulence models for engineering appli_cations. AIAA J, ;32((8):), 1598–605.
Ghasemian Masoud, Ashrafi Z Najafian, S. A. (2022). A review on com_putational fluid dynamic simulation techniques for darrieus vertical axis wind turbines. Energy Convers Manage, 149:, 87–100.
Global Wind report, 2021 - JournalsOfIndia. 2021, https://journalsofindia.com/ global-wind-report-2021/. [Accessed 31 May 2021]. (n.d.).
Global wind report 2019 | Global Wind Energy Council. https://gwec. net/global-wind-report-2019/. [Accessed 02 September 2020]. (2020).
Guo F, Song B, Mao Z, T. W. (n.d.). Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector. Energy, 117132.
Hand Brian, Kelly Ger, C. A. (2022). Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renew Sustain Energy, 139:, 110699.
Hongpeng L, Yu W, Rujing Y, Peng X, Q. W. (2020). Influence of the modification of asymmetric trailing-edge thickness on the aerodynamic performance of a wind turbine airfoil. Renew Energy, 147, 1623–31.
Howell R, Qin N, Edwards J, D. N. (n.d.). Wind tunnel and numerical study of a small vertical axis wind turbine. Renew Energy, 35((2):), 412–22.
Inc.;, A. (2012). Fluent ANSYS. 14.5 Theory Guide. Canonsburg, PA, USA:
Jiang, R., Zhao, Z., Liu, H., Wang, T., Chen, M., Feng, J., & Wang, D. (2022). Numerical study on the influence of vortex generators on wind turbine aerodynamic performance considering rotational effect. Renewable Energy, 186, 730–741. https://doi.org/10.1016/j.renene.2022.01.026
Jin X, Wang Y, Ju W, He J, X. S. (2022). Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation. Renew Energy, 115:, .41–53.
Karimian SMH, A. A. (2020). Performance investigation of a new Darrieus Vertical Axis Wind Turbine. Energy. 191, 1165.
Kerikous E, T. D. (n.d.-a). Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine. Energy, 189:, 116157.
Kerikous E, T. D. (n.d.-b). Optimal shape of thick blades for a hydraulic Savonius turbine. Renew Energy, 134:, 629–38.
Khorsand Iman, Kormos Christine, MacDonald Erin G, C. C. (n.d.). Wind energy in the city: An interurban comparison of social acceptance of wind energy projects. Energy Res Soc Sci, 8:, 66–77.
Kim D, G. M. (2013). Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. J Wind Eng Ind Aerodyn, 115, 48–52.
Kothe LB, Möller SV, P. A. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renew Energy, 148, 627–638.
Kumar A, S. R. (n.d.). Performance analysis of a single stage modified Savonius hy_drokinetic turbine having twisted blades. Renew Energy, 113, 461–78.
Kumar Anuj, S. R. (n.d.). Performance parameters of Savonius type hydrokinetic turbine–A review. Renew Sustain Energy, 2016;(64:), 289–310.
Kumar Rakesh, Raahemifar Kaamran, F. A. S. (n.d.). A critical review of vertical axis wind turbines for urban applications. Renew Sustain Energy, 89:, 281–291.
Kumar Rakesh, Raahemifar Kaamran, F. A. S. (2018). A critical review of vertical axis wind turbines for urban applications. Renew Sustain Energy Rev, 89:, 281–91.
Loganathan Bavin, Mustary Israt, Chowdhury Harun, A. F. (n.d.). Effect of sizing of a Savonius type vertical axis micro wind turbine. Energy Procedia, 110:, 555–60.
M.A. Akbar, V. M. (2021). A new approach for optimization of Vertical Axis Wind Turbines,. Jnl. Wind Eng. Ind. Aerodyn., 153, 34–45.
Mahmoud NH, El-Haroun AA, Wahba E, N. M. (2012). An experimental study on improvement of Savonius rotor performance. Alex Eng J, 51((1):), 19–25.
Marini, I. (2020). Computational analysis of Savonius wind turbine modi fi cations including novel scooplet-based design attained via smart numerical optimization. 262. https://doi.org/10.1016/j.jclepro.2020.121310
Masdari M, Tahani M, Naderi MH, B. N. (n.d.). Optimization of airfoil Based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm. J Cleaner Prod, 222:, 47–56.
Mohamed MH, Janiga G, Pap E, T. D. (n.d.-a). Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade. Energy Convers Manage, 52((1)), 236–242.
Mohamed MH, Janiga G, Pap E, T. D. (n.d.-b). Optimization of Savonius turbines using an obstacle shielding the returning blade. Renew Energy 2, 35((11)), 2618–26.
Mohan Kumar Palanisamy, Surya M Mohan Ram, Narasimalu Srikanth, L. T.-, & Cheng. (n.d.). Experimental and numerical investigation of novel Savonius wind turbine. Wind Eng, 43((3):), 247–62.
Naseem A, Uddin E, Ali Z, Aslam J, Shah SR, Sajid M, et al. (n.d.). Effect of vortices on power output of vertical axis wind turbine (VAWT). Sustainable Energy Technol Assess. 37, 100586.
Putri NP, Yuwono T, Rustam J, Purwanto P, B. G. (n.d.). Experimental studies on the effect of obstacle upstream of a Savonius wind turbine. S. N Appl Sci, 1((10)), 1216.
Reja RK, Amin Ruhul, Tasneem Zinat, Ali Md Firoj, I. M. R., & Saha Dip Kumar, et al. (n.d.). A review of the evaluation of urban wind resources: Challenges and perspectives. Energy Build, 111781.
Roshan A, Sagharichi A, M. M. (n.d.). Nondimensional Parameters’ Effects on Hybrid Darrieus-Savonius Wind Turbine Performance. J Energy Res Technol, 142((1)).
Roy Sukanta, Mukherjee Prasenjit, S. U. K. (2014). Aerodynamic evaluation of a novel Savonius-style wind turbine under an oriented jet. In: ASME 2014 Gas Turbine India Conference. American Society of Mechanical Engineers Digital Collection;
Roy Sukanta, S. U. K. (n.d.). Review of experimental investigations into the design, performance and optimization of the Savonius rotor. Proc Inst Mech Eng A, 227((4):), 528–42.
Saad, A. S., Elwardany, A., El-sharkawy, I. I., Ookawara, S., & Ahmed, M. (2021). Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors. Energy Conversion and Management, 235(March), 114013. https://doi.org/10.1016/j.enconman.2021.114013
Saad Ahmed S, El-Sharkawy Ibrahim I, Ookawara Shinichi, A. M. (n.d.). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conv Manage, 209:, 112673. https://doi.org/https://doi.org/10.1016/j.
Salam Gp Capt Abdus, Ali MA Taher, AnwarulAziz SM, Iqbal Asif, MijanurRah man Md, R. I. (n.d.). Design and fabrication of a bench mounted closed loop wind tunnel. MIST Int J Sci Technol, 2((1).).
Salleh Mohd Badrul, Kamaruddin Noorfazreena M, M.-K. Z. faa. (n.d.). The effects of deflector longitudinal position and height on the power performance of a conventional Savonius turbine. Energy Convers Manage, 226:, 113584.
Shamsoddin, S., & Porté-Agel, F. (2020). Effect of aspect ratio on vertical-axis wind turbine wakes. J Fluid Mechan, 889.
Sharma S, S. R. (n.d.). Performance improvement of Savonius rotor using multiple quarter blades–A CFD investigation. Energy Convers Manage, 127:, 43–54.
Simic Zdenko, Havelka Juraj George, V. M. B. (n.d.). Small wind turbines–A unique segment of the wind power market. Renew Energy, 50:, 1027–1036.
Stout C, Islam S, White A, Arnott S, Kollovozi E, Shaw M, et al. (n.d.). Efficiency improvement of vertical axis wind turbines with an upstream deflector. Energy Procedia, 118, 141–8.
Sultana Kaniz Ronak, Mandal Amalesh Chandra, H. B. S. M. mood E. (n.d.). An experimental investigation of wind load on tall buildings with hexagonal cross-section. MIST Int J Sci Technol, 2((1)).
Takao M, Kuma H, Maeda T, Kamada Y, Oki M, M. A. (2021). A straight-bladed vertical axis wind turbine with a directed guide vane row—Effect of guide vane geometry on the performance—. Therm Sci, 18.((1):), 54–57.
Talukdar PK, Sardar A, Kulkarni V, S. U. (n.d.). Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations. Energy Convers Manage, 158, 36–49.
Tasneem Zinat, Al Noman Abdullah, Das Sajal K, Saha Dip K, I. M. R., & Ali Md Firoj, et al. (n.d.). An analytical review on the evaluation of wind resource and wind turbine for urban application: prospect and challenges. Dev Built Environ, 100033.
Wong KH, Chong WT, Sukiman NL, Shiah YC, Poh SC, Sopian K, et al. (n.d.). Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Convers Manage, 160:, 109–25.
Wong Kok Hoe, Chong Wen Tong, Sukiman Nazatul Liana, P. S. C., & Shiah Yui-Chuin, W. C.-T. (n.d.). Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review. Renew Sustain Energy Rev, 73:, 904–921.
Wu, K. K., Wang, H. Y., Chen, C., & Tao, T. (2022). An ultra-low-power highly integrated novel one-cell battery management chip for wearables. Microelectronics Journal, 130(August), 105640. https://doi.org/10.1016/j.mejo.2022.105640
Published
2023-04-24
How to Cite
SIAGIAN, Parlin; ALAM, Hermansyah; FADLAN, Muhammad. TURBIN ANGIN JENIS ICEWIND SEBAGAI KONVERTER ANGIN KECEPATAN RENDAH UNTUK MENGHASILKAN TENAGA LISTRIK. Scenario (Seminar of Social Sciences Engineering and Humaniora), [S.l.], p. 50-63, apr. 2023. Available at: <https://jurnal.pancabudi.ac.id/index.php/scenario/article/view/4501>. Date accessed: 22 jan. 2025.
Issue
Section
Articles